Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutropha H16.

نویسندگان

  • Charles F Budde
  • Alison E Mahan
  • Jingnan Lu
  • Chokyun Rha
  • Anthony J Sinskey
چکیده

The bacterium Ralstonia eutropha H16 synthesizes polyhydroxybutyrate (PHB) from acetyl coenzyme A (acetyl-CoA) through reactions catalyzed by a β-ketothiolase (PhaA), an acetoacetyl-CoA reductase (PhaB), and a polyhydroxyalkanoate synthase (PhaC). An operon of three genes encoding these enzymatic steps was discovered in R. eutropha and has been well studied. Sequencing and analysis of the R. eutropha genome revealed putative isologs for each of the PHB biosynthetic genes, many of which had never been characterized. In addition to the previously identified phaB1 gene, the genome contains the isologs phaB2 and phaB3 as well as 15 other potential acetoacetyl-CoA reductases. We have investigated the roles of the three phaB isologs by deleting them from the genome individually and in combination. It was discovered that the gene products of both phaB1 and phaB3 contribute to PHB biosynthesis in fructose minimal medium but that in plant oil minimal medium and rich medium, phaB3 seems to be unexpressed. This raises interesting questions concerning the regulation of phaB3 expression. Deletion of the gene phaB2 did not result in an observable phenotype under the conditions tested, although this gene does encode an active reductase. Addition of the individual reductase genes to the genome of the ΔphaB1 ΔphaB2 ΔphaB3 strain restored PHB production, and in the course of our complementation experiments, we serendipitously created a PHB-hyperproducing mutant. Measurement of the PhaB and PhaA activities of the mutant strains indicated that the thiolase reaction is the limiting step in PHB biosynthesis in R. eutropha H16 during nitrogen-limited growth on fructose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative proteome analysis reveals four novel polyhydroxybutyrate (PHB) granule-associated proteins in Ralstonia eutropha H16.

Identification of proteins that were present in a polyhydroxybutyrate (PHB) granule fraction isolated from Ralstonia eutropha but absent in the soluble, membrane, and membrane-associated fractions revealed the presence of only 12 polypeptides with PHB-specific locations plus 4 previously known PHB-associated proteins with multiple locations. None of the previously postulated PHB depolymerase is...

متن کامل

Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents.

β-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate, Ralstonia eutropha H16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. In R...

متن کامل

Production of fatty acids in Ralstonia eutropha H16 by engineering β-oxidation and carbon storage

Ralstonia eutropha H16 is a facultatively autotrophic hydrogen-oxidizing bacterium capable of producing polyhydroxybutyrate (PHB)-based bioplastics. As PHB's physical properties may be improved by incorporation of medium-chain-length fatty acids (MCFAs), and MCFAs are valuable on their own as fuel and chemical intermediates, we engineered R. eutropha for MCFA production. Expression of UcFatB2, ...

متن کامل

Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy.

Wautersia eutropha, formerly known as Ralstonia eutropha, a gram-negative bacterium, accumulates polyhydroxybutyrate (PHB) as insoluble granules inside the cell when nutrients other than carbon are limited. In this paper, we report findings from kinetic studies of granule formation and degradation in W. eutropha H16 obtained using transmission electron microscopy (TEM). In nitrogen-limited grow...

متن کامل

Polyhydroxybutyrate biosynthesis in Caulobacter crescentus: molecular characterization of the polyhydroxybutyrate synthase.

Caulobacter crescentus was investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Polyhydroxyalkanoate (PHA) accumulation contributing to approximately 18% of the cell dry weight was obtained in the presence of glucose. Gas chromatography-mass spectrometry and gel permeation chromatography of the purified PHA showed that this polyester was solely composed of 3-hydroxybutyrate and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 192 20  شماره 

صفحات  -

تاریخ انتشار 2010